Bibliography
[1]

Dominique Attali, André Lieutier, and David Salinas. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. In Proceedings of the 27th annual ACM symposium on Computational geometry, SoCG '11, pages 501–509, 2011.

[2]

Dominique Attali, André Lieutier, and David Salinas. Efficient data structure for representing and simplifying simplicial complexes in high dimensions. Int. J. Comput. Geometry Appl., 22(4):279–304, 2012.

[3]

Jean-Daniel Boissonnat and Arijit Ghosh. Manifold reconstruction using tangential delaunay complexes. Discrete & Computational Geometry, 51(1):221–267, 2014.

[4]

Jean-Daniel Boissonnat and Clément Maria. Computing persistent homology with various coefficient fields in a single pass. Rapport de recherche RR-8436, INRIA, December 2013.

[5]

Jean-Daniel Boissonnat and Clément Maria. The simplex tree: An efficient data structure for general simplicial complexes. Algorithmica, pages 1–22, 2014.

[6]

Jean-Daniel Boissonnat, Tamal K. Dey, and Clément Maria. The compressed annotation matrix: An efficient data structure for computing persistent cohomology. In ESA, pages 695–706, 2013.

[7]

Gunnar E. Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational Mathematics, 10(4):367–405, 2010.

[8]

Vin De Silva and Gunnar Carlsson. Topological estimation using witness complexes. Proc. Sympos. Point-Based Graphics, pages 157–166, 2004.

[9]

Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent cohomology and circular coordinates. Discrete & Computational Geometry, 45(4):737–759, 2011.

[10]

Tamal K. Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simplicial maps. CoRR, abs/1208.5018, 2012.

[11]

Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American Mathematical Society, 2010.

[12]

Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques, SIGGRAPH '97, pages 209–216, New York, NY, USA,

  1. ACM Press/Addison-Wesley Publishing Co.

[13]

Samuel Hornus, Olivier Devillers, and Clément Jamin. dD triangulations. In CGAL User and Reference Manual. CGAL Editorial Board, 4.7 edition, 2015.

[14]

T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology. Applied Mathematical Sciences. Springer New York, 2004.

[15]

Peter Lindstrom and Greg Turk. Fast and memory efficient polygonal simplification. In Proceedings of the Conference on Visualization '98, VIS '98, pages 279–286, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[16]

Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The Gudhi library: Simplicial complexes and persistent homology. In ICMS, 2014.

[17]

James R. Munkres. Elements of algebraic topology. Addison-Wesley, 1984.

[18]

Michael Seel. dD geometry kernel. In CGAL User and Reference Manual. CGAL Editorial Board, 4.7 edition, 2015.

[19]

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.7 edition, 2015.

[20]

Hubert Wagner, Chao Chen, and Erald Vucini. Efficient Computation of Persistent Homology for Cubical Data, pages 91–106. Mathematics and Visualization. Springer Berlin Heidelberg, 2012.

[21]

Afra Zomorodian and Gunnar E. Carlsson. Computing persistent homology. Discrete & Computational Geometry, 33(2):249–274, 2005.

GUDHI  Version 2.0.0  - C++ library for Topological Data Analysis (TDA) and Higher Dimensional Geometry Understanding. Generated on Wed Apr 19 2017 22:26:16 for GUDHI by doxygen 1.8.11